B.Sc. Part—III Semester—VI Examination MATHEMATICS (Linear Algebra) Paper—XI

Time : Three Hours] [Maximum Marks : 60 Note (-1) Question No. 1 is compulsory and attempt it once only. (2) Attempt **ONE** question from each Unit. 1. Choose the correct alternatives : (1) If U and V are subspaces of a vector space W, then $U \cup W$ is a subspace of W iff : (b) $W \subseteq U$ (a) $U \supseteq W$ (d) $U \subseteq W$ or $W \subseteq U$ (c) $U \subseteq W$ and $W \subseteq U$ (2) The basis $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ of the vector space $\mathbb{R}(\mathbb{R})$ is known as : 211 (b) Normal basis (a) Standard basis (d) None of these (c) Quotient basis (3) If $T: U \rightarrow V$ is the identity map, then Nullity of T is : (a) 1 (b) 0 (c) 2 (d) 3 (4) The Kernel of a linear transformation $T : U \rightarrow V$ is a subset of : (a) V (b) U (c) U and V (d) None of these (5) Annihilator of W, A(W) is a subspace of : (a) W (b) V (c) Ŷ (d) None of these (6) Let U and V be complex vector spaces. If $A : U \to V$ be a linear map, then adjoint of A i.e. A* is a linear map : (a) From \hat{U} to \hat{V} (b) From \hat{V} to \hat{U} (c) From U to V (d) From V to U

(Contd.)

(7) Every set of orthogonal vectors is :

	(a) Linearly Dependent		
	(b) Linearly Independent		
	(c) Linearly Independent and Linearly Dependent		
	(d) None of these		
(8)	If $ \mathbf{U} = 1$, then U is called :		
	(a) Normalised	(b) Orthogonal	
	(c) Scalar inner product	(d) Standard inner product	
(9)	The zero element of quotient module M/K	is : 3	
	(a) M	(b) K	
	(c) {0}	(d) None of these	
(10) Let M be an R-module, then M and $\{0\}$ are called :			
	(a) Proper submodule of M	(b) Zero module	
	(c) Improper submodule of M	(d) None of these	1×10=10
UNIT—I			

- 2. (a) Let R^{+} be the set of all positive real numbers. Define the operations of addition \oplus and scalar multiplication \otimes defined on R^{+} as follows :
 - (i) $u \oplus v = uv \quad \forall u, v \in R^+$ (ii) $\alpha \otimes u = u^{\alpha} \quad \forall u \in R^+, \alpha \in R$ Prove that R^+ is a real vector space.
 - (b) Define subspace of a vector space. Prove that intersection of two subspaces of vector space is a subspace.
- (p) If S is a non-empty subset of a vector space V. Then prove that L(S) is the smallest subspace of V containing S.
 - (q) If U and W are two subspaces of a vector space V and Z = U + W, then show that $Z = U \oplus W \Rightarrow z = u + w$ uniquely for any $z \in Z$ and for some $u \in U$ and $w \in W$.

5

UNIT-II

- (a) If T is a linear transformation from y to v_2 defined by $T_{(2, 1)} = (3, 4), T_{(-3, 4)} = (0, 5),$ 4. then express (0, 1) as a L.C of (2, 1) and (-3, 4). Hence find image of (0, 1)under T. 5
 - (b) If $T: U \rightarrow V$ is a linear map, then prove that :
 - (i) N(T) is a subspace of U
 - (ii) R(T) is a subspace of V.
- (p) State and prove Rank-Nullity theorem. 5.
 - (q) Let T: $V_3 \rightarrow V_3$ defined by T(x₁, x_e, x₃) = (x₁ + x_e, x₂ + x₃, x₃ 2x₁). Find range, kernel, rank and nullity. Also verify Rank-Nullity theorem. 5

UNIT—III

(a) Let V be a vector space over F. For a subset S of V, let 6.

 $A(S) = \{ f \in \hat{V} : f(s) = 0, \forall s \in S \}$

Prove that A(S) = A(L(S)), where L(S) is a linear span of S. 5

- (b) If U,V are finite dimensional complex vector spaces and A : U \rightarrow V, B : U \rightarrow V are linear maps $\alpha \in C$, then prove that :
 - (i) $(A + B)^* = A^* + B^*$
 - 21 (ii) $(\alpha A)^* = \overline{\alpha} A^*$

7. (p) Prove that eigen vectors corresponding to distinct eigen values of a square matrix are 5 linearly independent.

(q) If W is a subspace of finite dimensional vector space V, then prove that A(A(W)) = W.5

UNIT-IV

- 8. (a) Define inner product space and if V is an inner product space, then prove that for arbitrary vectors u, $v \in V$ and scalar $\alpha \in F$:
 - (i) $\|\alpha \mathbf{u}\| = |\alpha| \|\mathbf{u}\|$

(ii)
$$||u + v|| \le ||u|| + ||v||$$

(b) Let V be an inner product space over F. If $u, v \in V$, then prove that :

$$\langle \mathbf{u}, \mathbf{v} \rangle \leq \|\mathbf{u}\| \cdot \|\mathbf{v}\|$$
 5

(p) Using Gram-Schmidt process orthonormalise the set of vectors 9. $\mathcal{O}_{\{(1, 0, 1, 0), (1, 1, 3, 0), (0, 2, 0, 1) \text{ in } V_{\mu}\}}$ 5

(q) If $\{x_1, x_2, x_3, \dots, x_n\}$ is an orthogonal set, then prove that :

3

 $||\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \dots + \mathbf{x}_n|| = ||\mathbf{x}_1||^2 + ||\mathbf{x}_2||^2 + \dots + ||\mathbf{x}_n||^2$ 5

LT-902

5

5

5

5

UNIT-V

- 10. (a) Define direct sum of submodules. If M_1 and M_2 are submodules of R-module M, then prove that $M_1 + M_2$ is a submodule of R-module M. 5
 - (b) Define homomorphism of modules and if $T:M\to H$ is an R-homomorphism, then prove that :

(i)
$$T_{(0)} = 0$$

(ii) $T_{(-m)} = -m \quad \forall m \in M$
(iii) $T_{(m_1 - m_2)} = T_{(m_1)} - T_{(m_2)} \quad \forall m_1 m_2 \in M$
5
Define the set of the s

11. (p) Define the submodule and prove that an arbitrary intersection of submodules of a module is submodule.

317

(q) If M is an R-module, H and K are submodules of M such that $K \subset H$, then prove that :

$$\frac{M}{H} = \frac{M/K}{H/K}$$

317

317