B.Sc. Part-III Semester-VI Examination
 MATHEMATICS (Linear Algebra)
 Paper-XI

Time : Three Hours]
[Maximum Marks : 60
Note :-(1) Question No. 1 is compulsory and attempt it once only.
(2) Attempt ONE question from each Unit.

1. Choose the correct alternatives :
(1) If U and V are subspaces of a vector space W, then $U \cup W$ is a subspace of W iff :
(a) $\mathrm{U} \supseteq \mathrm{W}$
(b) $\mathrm{W} \subseteq \mathrm{U}$
(c) $\mathrm{U} \subseteq \mathrm{W}$ and $\mathrm{W} \subseteq \mathrm{U}$
(d) $\mathrm{U} \subseteq \mathrm{W}$ or $\mathrm{W} \subseteq \mathrm{U}$
(2) The basis $\{(1,0,0),(0,1,0),(0,0,1)\}$ of the vector space $R^{R}(R)$ is known as :
(a) Standard basis
(b) Normal basis
(c) Quotient basis
(d) None of these
(3) If $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ is the identity map, then Nullity of T is :
(a) 1
(b) 0
(c) 2
(d) 3
(4) The Kernel of a linear transformation $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ is a subset of :
(a) V
(b) U
(c) U and V
(d) None of these
(5) Annihilator of $\mathrm{W}, \mathrm{A}(\mathrm{W})$ is a subspace of :
(a) W
(b) V
(c) $\hat{\mathrm{V}}$
(d) None of these
(6) Let U and V be complex vector spaces. If $\mathrm{A}: \mathrm{U} \rightarrow \mathrm{V}$ be a linear map, then adjoint of A i.e, A^{*} is a linear map :
(a) From \hat{U} to \hat{V}
(b) From $\hat{\mathrm{V}}$ to $\hat{\mathrm{U}}$
(c) From U to V
(d) From V to U
(7) Every set of orthogonal vectors is :
(a) Linearly Dependent
(b) Linearly Independent
(c) Linearly Independent and Linearly Dependent
(d) None of these
(8) If $\|U\|=1$, then U is called :
(a) Normalised
(b) Orthogonal
(c) Scalar inner product
(d) Standard inner product
(9) The zero element of quotient module M / K is :
(a) M
(b) K
(c) $\{0\}$
(d) None of these
(10) Let M be an R-module, then M and $\{0\}$ are called :
(a) Proper submodule of M
(c) Improper submodule of M
(b) Zero module
(d) None of these
$1 \times 10=10$
UNIT-I
2. (a) Let R^{+}be the set of all positive real numbers. Define the operations of addition \oplus and scalar multiplication \otimes defined on R^{+}as follows :
(i) $\mathrm{u} \oplus \mathrm{v}=\mathrm{uv} \quad \forall \mathrm{u}, \mathrm{v} \in \mathrm{R}^{+}$
(ii) $\alpha \otimes u=u^{\alpha} \quad \forall \mathrm{u} \in \mathrm{R}^{+}, \alpha \in \mathrm{R}$

Prove that R^{+}is a real vector space.
(b) Define subspace of a vector space. Prove that intersection of two subspaces of vector space is a subspace.
3. (p) If S is a non-empty subset of a vector space V. Then prove that $L(S)$ is the smallest subspace of V containing S .
(q) If U and W are two subspaces of a vector space V and $Z=U+W$, then show that $Z=U \oplus W \Rightarrow z=u+w$ uniquely for any $z \in Z$ and for some $u \in U$ and $\mathrm{w} \in \mathrm{W}$.

UNIT-II

4. (a) If T is a linear transformation from v_{2} to v_{2} defined by $\mathrm{T}_{(2,1)}=(3,4), \mathrm{T}_{(-3,4)}=(0,5)$, then express $(0,1)$ as a L.C of $(2,1)$ and $(-3,4)$. Hence find image of $(0,1)$ under T .
(b) If $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ is a linear map, then prove that :
(i) $\mathrm{N}(\mathrm{T})$ is a subspace of U
(ii) $R(T)$ is a subspace of V.
5. (p) State and prove Rank-Nullity theorem.
(q) Let $T: V_{3} \rightarrow V_{3}$ defined by $T\left(x_{1}, x_{e}, x_{3}\right)=\left(x_{1}+x_{e}, x_{2}+x_{3}, x_{3}-2 x_{1}\right)$. Find range, kernel, rank and nullity. Also verify Rank-Nullity theorem.

UNIT-III

6. (a) Let V be a vector space over F . For a subset S of V , let

$$
A(S)=\{f \in \hat{V}: f(s)=0, \forall s \in S\}
$$

Prove that $\mathrm{A}(\mathrm{S})=\mathrm{A}(\mathrm{L}(\mathrm{S})$), where $\mathrm{L}(\mathrm{S})$ is a linear span of S .
(b) If U, V are finite dimensional complex vector spaces and $\mathrm{A}: \mathrm{U} \rightarrow \mathrm{V}, \mathrm{B}: \mathrm{U} \rightarrow \mathrm{V}$ are linear maps $\alpha \in \mathrm{C}$, then prove that :
(i) $(\mathrm{A}+\mathrm{B})^{*}=\mathrm{A}^{*}+\mathrm{B}^{*}$
(ii) $(\alpha \mathrm{A})^{*}=\bar{\alpha} \mathrm{A}$ *
7. (p) Prove that eigen vectors corresponding to distinct eigen values of a square matrix are linearly independent.
(q) If W is a subspace of finite dimensional vector space V , then prove that $\mathrm{A}(\mathrm{A}(\mathrm{W}))=\mathrm{W}$.

UNIT-IV

8. (a) Define inner product space and if V is an inner product space, then prove that for arbitrary vectors $u, v \in V$ and scalar $\alpha \in \mathrm{F}$:
(i) $\|\alpha u\|=|\alpha| \| u| |$
(ii) $\|\mathrm{u}+\mathrm{v}\| \leq\|\mathrm{u}\|+\|\mathrm{v}\|$
(b) Let V be an inner product space over F . If $\mathrm{u}, \mathrm{v} \in \mathrm{V}$, then prove that:

$$
\langle\mathrm{u}, \mathrm{v}\rangle \leq\|\mathrm{u}\| \cdot\|\mathrm{v}\|
$$

9. (p) Using Gram-Schmidt process orthonormalise the set of vectors

$$
\left\{(1,0,1,0),(1,1,3,0),(0,2,0,1) \text { in } V_{u} .\right.
$$

(q) If $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots . \mathrm{x}_{\mathrm{n}}\right\}$ is an orthogonal set, then prove that:

$$
\left\|\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\ldots \ldots . .+\mathrm{x}_{\mathrm{n}}\right\|=\left\|\mathrm{x}_{1}\right\|^{2}+\left\|\mathrm{x}_{2}\right\|^{2}+\ldots . .+\left\|\mathrm{x}_{\mathrm{n}}\right\|^{2}
$$

UNIT-V

10. (a) Define direct sum of submodules. If M_{1} and M_{2} are submodules of R -module M , then prove that $M_{1}+M_{2}$ is a submodule of R-module M.
(b) Define homomorphism of modules and if $\mathrm{T}: \mathrm{M} \rightarrow \mathrm{H}$ is an R -homomorphism, then prove that :
(i) $\mathrm{T}_{(0)}=0$
(ii) $\mathrm{T}_{(-\mathrm{m})}=-\mathrm{m} \quad \forall \mathrm{m} \in \mathrm{M}$
ζ (iii) $\mathrm{T}_{\left(\mathrm{m}_{1}-\mathrm{m}_{2}\right)}=\mathrm{T}_{\left(\mathrm{m}_{1}\right)}-\mathrm{T}_{\left(\mathrm{m}_{2}\right)} \quad \forall \mathrm{m}_{1} \mathrm{~m}_{2} \in \mathrm{M}$
11. (p) Define the submodule and prove that an arbitrary intersection of submodules of a module is submodule.
(q) If M is an R-module, H and K are submodules of M such that $K \subset H$, then prove that :

$$
\frac{M}{H}=\frac{M / K}{H / K}
$$

